A Methodology for Constructing Geometric Priors and Likelihoods for Deformable Shape Models
نویسندگان
چکیده
Deformable shape models require correspondence across the training population in order to generate a statistical model for use as a future geometric prior. Traditional methods use fixed sampling and assume correspondence, or attempt to induce correspondence by minimizing variance. In this paper, we define a training methodology for sampled medial deformable shape models (m-reps) which generates correspondence implicitly via a geometric prior. We present quantitative results of the method applied to real medical images.
منابع مشابه
Geometrically Proper Models in Statistical Training
In deformable model segmentation, the geometric training process plays a crucial role in providing shape statistical priors and appearance statistics that are used as likelihoods. Also, the geometric training process plays a crucial role in providing shape probability distributions in methods finding significant differences between classes. The quality of the training seriously affects the fina...
متن کاملA Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models
Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis. Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...
متن کاملProper Training
In deformable model segmentation, the geometric training process plays a crucial role in providing shape statistical priors and appearance statistics that are used as likelihoods. Also, the geometric training process plays a crucial role in providing shape probability distributions in methods finding significant differences between classes. The quality of the training seriously affects the fina...
متن کاملLikelihoods and Parameter Priors for
We develop simple methods for constructing likelihoods and parameter priors for learning about the parameters and structure of a Bayesian network. In particular, we introduce several assumptions that permit the construction of likelihoods and parameter priors for a large number of Bayesian-network structures from a small set of assessments. The most notable assumption is that of likelihood equi...
متن کاملLikelihoods and Parameter Priors for Bayesian Networks
We develop simple methods for constructing likelihoods and parameter priors for learning about the parameters and structure of a Bayesian network. In particular, we introduce several assumptions that permit the construction of likelihoods and parameter priors for a large number of Bayesian-network structures from a small set of assessments. The most notable assumption is that of likelihood equi...
متن کامل